Finkurier.ru

Журнал про Деньги
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Настоящая стоимость денег

Настоящая стоимость денег

В инвестиционной практике, как правило, необходимо сравнивать сумму денег, укладывается в проект с суммой денег, которые инвестор надеется получить после завершения инвестиционного периода Для сравнения ния суммы денежных средств при их вложения с суммой денег, которая будет получена используют понятие будущая и нынешняя стоимость денег

Будущая стоимость денег это та сумма, в которую должны превратиться через определенное время, вложенные сегодня под процент деньги

Расчет будущей стоимости денег связано с процессом наращивания (компаундирования) первоначальной суммы

Наращивание это увеличение первоначальной суммы денег путем присоединения к ней суммы процентных платежей

Для расчета будущей стоимости денег используется формула сложных процентов:

где FV (Future value) — будущая стоимость денег, Р (present value) — начальная инвестирована сумма; r-ставка%, или ставка доходности; n — количество периодов, по которым начисляются проценты, (1 r) n — множитель наращивания (компаундирования.

Сложный процент — это сумма дохода, которую получит инвестор в результате инвестирования определенной суммы денег при условии, что простой процент не уплачивается конце каждого периода, а добавляется к сумме основного вклада и в на другие периоде также приносит дохо.

Процентная ставка используется не только как инструмент наращивания стоимости денежных средств, но и как норма доходности инвестиционных операций

Множитель наращивания (компаундирования) будущая стоимость одной денежной единицы в настоящее время, инвестированной на определенный период под процентную ставку

Пример:

Банк платит 5% годовых по депозитному валютном вклада В соответствии с формулой будущей стоимости денег $ 100, что Вы положили на депозит сегодня через год равна:

FV1 = $ 100 (1 +0,05) = $ 105

Если Вы решили оставить эту сумму на депозите еще на один год, то в конце второго года размер вклада составит:

FV2 = $ 105 (1 +0,05) = $ 110,25

FV2 = P (1 r) 2 = $ 100 (1 +0,05) 2 = $ 110,25

Настоящая (современная) стоимость денег — это сумма будущих денежных поступлений, приведенных к текущему моменту с учетом процентной ставки, или нормы доходности

Нынешняя стоимость денег рассчитывается по формуле:

PV =,

где PV (present value) — текущая стоимость денег

Пример:

Предположим инвестор хочет получить $ 200 через 2 года Какую сумму он должен положить на депозит сегодня, если ставка процента составляет 5%?

PV2 = = $ 181,4

Расчет настоящей стоимости денег называется процессом дисконтирования будущей стоимости денег Из формулы следует, что дисконтирования — процесс обратный наращиванию Размер r называется ставке дисконта, или просто дисконтом, а величина (1 r) n — множителем дисконтирования

Дисконт это процентная ставка, которая применяется к денежным сумм, которые инвестор планирует получить в будущем для того, чтобы определить размер инвестиций в настоящее время При определении учетных ставок учитывается ують такие принципы:

  • из двух будущих поступлений высшее учетную ставку будет иметь то, что поступит позже;
  • чем ниже определенный уровень риска, тем ниже должна быть ставка дисконта;
  • если общие процентные ставки на рынке растут, растут и дисконтные ставки

Дисконт может уменьшиться, если есть перспектива делового подъема, снижение инфляции и процентных ставок Если уменьшается дисконт, то растет настоящая стоимость будущих доходов

Множитель дисконтирования текущая стоимость 1 денежной единицы за период n дисконтированная на процент r за каждый период

Расчет будущей и настоящей стоимости денег можно сделать с помощью обычного или финансового калькулятора, а также с помощью финансовых таблиц, приведенных в приложениях к данному во дручника В финансовых таблицах по горизонтали указаны ставки процентов, а по вертикали — номер периода, на пересечении этих значений можно найти величину соответствии множителя наращивание или дисконтированияя.

Очевидно, если Вы два разных проекта с одинаковым периодом реализации, но разными учетными ставками, то можно определить их текущую стоимость и сравнить, какой из них целесообразно выбрать

Для формирования эффективных стратегических и тактических программ предприятию необходимо постоянно проводить диагностику предложенных проектов и направлять ее прежде всего на перспективу (хотя результаты р ретроспективной диагностики состояния инвестиционной деятельности объекта тоже учитываются.

Качество диагностического анализа зависит от выбранных критериев оценки принятия инвестиционных решений, то есть насколько весомым является комплекс факторов, используется при исследованиях и насколько пр равильна учитывается их возможное влияние на принятие конкретного инвестиционного решения

Совокупность количественных критериев, используемых для оценки эффективности инвестиций можно разделить на две группы: динамические (учитывающие фактор времени) и статические (учетные) Классификация методов в оценки по этому критерию приведена на Рис29

Рис23 Классификация количественных методов оценки инвестиционных проектов

Динамические показатели также называют дисконтными, поскольку они базируются на определении текущей стоимости (дисконтировании) денежных потоков, создающих инвестированы средства

Настоящая стоимость денег, ее определение и использование в финансовых расчетах;

Настоящая стоимость денегэтосумма, получаемая в результате приведения будущей стоимости денег к настоящему моменту с помощью дисконтной ставки.

Если предположить простую финансовую сделку, в результате которой будущая стоимость средств (F) приводится к некоторой настоящей сумме (Р ’ ), то данная сделка характеризуется показателем, называемым темпом снижения (i(t)):

. (4.36)

Темп снижения принято называть коэффициентом дисконтирования или дисконтной ставкой.

Пример 4.17. Предприятие должно вернуть в банк сумму долга в размере 500 тыс. гр. Настоящая приведенная сумма кредита, взятого на один год, составила 400 тыс. гр. Определить коэффициент дисконтирования или дисконтную ставку.

Решение:Используем формулу (4.36)

или 20%.

Метод дисконтирования наиболее часто используется в операциях по учету векселей и оценки эффективности инвестиционных проектов.

Учет векселя — это решение банка купить вексель у векселедержателя.

В теории финансовых вычислений существуют два метода расчета настоящей стоимости: математический и банковский (коммерческий).

При математическом методе определения настоящей стоимости используется процентная дисконтная ставка, т.е. решается задача обратная определению наращенной суммы. Эта задача, формулируется таким образом: какую сумму денег следует дать в долг на срок (t) лет, чтобы при начислении на нее процентов по ставке (n) получить наращенную величину, равную (F).

Банковский метод определения настоящей стоимости основан на использовании учетной ставки (d), т.е. проценты за пользование ссудой начисляются на сумму, подлежащую уплате в конце срока ссуды.

Определение настоящей стоимости денег при математическом методе предполагает использование схем простой и сложной дисконтной ставки.

Настоящая стоимость денег при использовании простой дисконтной ставки определяется по формуле:

Читать еще:  Денежная система сущность виды и элементы

, (4.37)

где P ’ — настоящая приведенная стоимость денег;

i — простая процентная дисконтная ставка;

t — срок финансовой сделки (число полных лет); в случае, когда (t) меньше 1 года, тогда (f — число дней сделки, или число дней обращения векселя, или число дней до даты погашения векселя, или число месяцев движения векселя; k — продолжительность года в днях или в месяцах; k — 365(366) дней или 12 месяцев);

F — будущая стоимость денег (будущая или номинальная стоимость векселя).

. (4.38)

Пример 4.18. Банк выдал вексель сроком на 1 год, по которому можно будет получить сумму, 250 тыс. гр. Какая была внесена в банк сумма денег в момент приобретения векселя, если его доходность должна составить 11% годовых?

Решение: Используем формулу (4.37)

тыс. гр.

Пример 4.19. Владелец векселя номинальной стоимостью 250 тыс. гр. и сроком обращения 1 год предъявил его банку — эмитенту для учета за 120 дней до даты погашения. Банк учел вексель по ставке 16% годовых. Определить сумму, полученную владельцем векселя и величину дисконта, полученную банком.

Решение: Используем формулы (4.37) и (4.38)

тыс. гр.

тыс. гр.

Настоящая стоимость денег при использовании сложной процентной дисконтной ставки определяется по формуле:

, (4.39)

где — дисконтный множитель;

i — сложная процентная дисконтная ставка.

В финансовых вычислениях базовая формула (4.39), определения настоящей стоимости, может быть трансформирована с учетом различных периодов формирования денежных потоков:

, (4.40)

где F1, F2, F3, … Ft — будущая стоимость денег, формирующаяся по периодам;

(1 + i) 1 , (1 + i) 2 , (1 + i) 3 , …, (1 + i) t — дисконтные множители по периодам;

t — число периодов, приведения будущей стоимости к настоящему моменту времени.

Предложенная формула является базовой для оценки эффективности инвестиционных проектов. Чтобы оценить эффективность инвестиционного проекта в формулу (4.40) необходимо внести небольшие дополнения, предполагающие уменьшение настоящей приведенной стоимости на величину стартовых инвестиций. Формула для расчета может быть:

, (4.41)

где NVP (net present value) — чистая приведенная стоимость;

IC — стартовые инвестиции.

Пример 4.20. Предприятие прогнозирует реализовать инвестиционный проект стоимость в 1 млн. гр. базовых инвестиций в течение одного года. Дисконтная процентная ставка установлена по проекту на уровне 12% годовых. Чистый возвратный денежный поток формируется в течение 5 лет. В первый год чистый возвратный поток составит 160 тыс. гр., во втором году — 390 тыс. гр., в третьем году 560 тыс. гр., в четвертом году — 490 тыс. гр., в пятом году — 350 тыс. гр. Оценить эффективность инвестиционного проекта, рассчитав его настоящую приведенную стоимость и сумму дисконта по данному проекту.

Решение: Используем формулу (4.41)

Так как полученная сумма положительная, то рассматриваемый инвестиционный проект можно признать как экономически эффективный. Однако для окончательного решения требуется подсчет и ряда других показателей, например, периода или срока окупаемости и т.п.

При начислении сложных дисконтных процентов (m) раз в году формулу (4.39) можно представить в таком виде:

, (4.42)

где — дисконтный множитель.

Для формул (4.39) и (4.42) значение дисконта может быть определено по следующим формулам:

. (4.43)

. (4.44)

Пример 4.21. Определить настоящую стоимость суммы, 120 тыс. гр., которую должны выплатить через 3 года, если на первоначальную сумму начислялись сложные проценты в размере 12% годовых. Дополнительные условия: а) начисление производилось 1 раз в год; б) начисление производилось ежеквартально.

Решение: Используем формулы (4.39) и (4.42)

а) тыс. гр.

б) тыс. гр.

При банковском методе определения настоящей приведенной стоимости денег при простой учетной дисконтной ставке расчет производится по формуле:

, (4.45)

где d — учетная дисконтная ставка, доли единиц.

Пример 4.22. Векселедержатель предъявил для учета вексель на сумму 3 млн. гр. со сроком погашения 1 февраля текущего года. Вексель предъявлен 12.01 текущего года. Банк согласился учесть вексель с дисконтом 14% годовых. Определить сумму, которую получит векселедержатель и сумму дисконта, полученную банком.

Решение: Используем формулу (4.45)

млн. гр. (получил векселедержатель).

или 23014 гр. (сумма дисконта).

Пример 4.23.Предприятие продало товар в кредит с оформлением простого векселя, номинальная стоимость которого 450 тыс. гр., срок векселя — 60 дней, ставка процента за кредит — 19% годовых. Через 45 дней с момента оформления векселя предприятие решило учесть вексель в банке; предложенная банком дисконтная ставка составила 15% годовых. Определить суммы, полученные предприятием и банком в результате данной сделки.

а) определим будущую стоимость векселя к моменту его погашения:

тыс. гр.

б) определим срочную стоимость векселя в момент учета его банком:

тыс. гр.

в) определим сумму, которую получит предприятие:

тыс. гр.

г) определим сумму денег, которую получит банк за 15 дней до погашения векселя:

464,055 – 460,541 = 3,514 тыс. гр.

д) определим сумму комиссионных, полученных банком при учете векселя:

460,541 – 455,473 = 5,068 тыс. гр.

е) общая сумма средств, полученная банком при учете векселя:

3,514 + 5,068 = 8,582 тыс. гр.

Настоящая стоимость денег при сложной дисконтной учетной ставке определяется по формуле:

. (4.46)

где d — сложная годовая дисконтная учетная ставка.

Дисконт вычисляется по формуле:

. (4.47)

Сложная дисконтная учетная ставка может быть определена по формуле:

. (4.48)

Учебник «Оценка эффективности инвестиционных проектов»

4. Финансово-математические основы инвестиционного проектирования

4. 1. Концепция стоимости денег во времени

В основе концепции стоимости денег во времени лежит следующий основной принцип: Доллар сейчас стоит больше, чем доллар, который будет получен в будущем, например через год, так как он может быть инвестирован и это принесет дополнительную прибыль. Данный принцип является наиболее важным положением во всей теории финансов и анализе инвестиций. На этом принципе основан подход к оценке экономической эффективности инвестиционных проектов.

Данный принцип порождает концепцию оценки стоимости денег во времени. Суть концепции заключается в том, что стоимость денег с течением времени изменяется с учетом нормы прибыльности на денежном рынке и рынке ценных бумаг. В качестве нормы прибыльности выступает норма ссудного процента или норма выплаты дивидендов по обыкновенным и привилегированным акциям.

Учитывая, что инвестирование представляет собой обычно длительный процесс, в инвестиционной практике обычно приходится сравнивать стоимость денег в начале их инвестирования со стоимостью денег при их возврате в виде будущей прибыли. В процессе сравнения стоимости денежных средств при их вложении и возврате принято использовать два основных понятия: настоящая (современная) стоимость денег и будущая стоимость денег.

Читать еще:  В основе денежной эмиссии лежат

Будущая стоимость денег представляет собой ту сумму, в которую превратятся инвестированные в настоящий момент денежные средства через определенный период времени с учетом определенной процентной ставки. Определение будущей стоимости денег связано с процессом наращения (compounding) начальной стоимости, который представляет собой поэтапное увеличение вложенной суммы путем присоединения к первоначальному ее размеру суммы процентных платежей. В инвестиционных расчетах процентная ставка платежей применяется не только как инструмент наращения стоимости денежных средств, но и как измеритель степени доходности инвестиционных операций.

Настоящая (современная) стоимость денег представляет собой сумму будущих денежных поступлений, приведенных к настоящему моменту времени с учетом определенной процентной ставки. Определение настоящей стоимости денег связано с процессом дисконтирования (discounting), будущей стоимости, который (процесс) представляет собой операцию обратную наращению. Дисконтирование используется во многих задачах анализа инвестиций. Типичной в данном случае является следующая: определить какую сумму надо инвестировать сейчас, чтобы получить например, $1,000 через 5 лет.

Таким образом, одну и ту же сумму денег можно рассматривать с двух позиций:

а) с позиции ее настоящей стоимости

б) с позиции ее будущей стоимости

Причем, арифметически стоимость денег в будущем всегда выше.

4. 2. Элементы теории процентов

В процессе анализа инвестиционных решений принято использовать сложные проценты. Сложным процентом называется сумма дохода, которая образуется в результате инвестирования денег при условии, что сумма начисленного простого процента не выплачивается в конце каждого периода, а присоединяется к сумме основного вклада и в следующем платежном периоде сама приносит доход.

Основная формула теории процентов определяет будущую стоимость денег:

, (4.1)

где P — настоящее значение вложенной суммы денег,

F — будущее значение стоимости денег,

n — количество периодов времени, на которое производится вложение,

r — норма доходности (прибыльности) от вложения.

Простейшим способом эту формулу можно проинтерпретировать, как определение величины депозитного вклада в банк при депозитной ставке r (в долях единицы).

Существо процесса наращения денег не изменяется, если деньги инвестируются в какой-либо бизнес (предприятие). Главное, чтобы вложение денег обеспечивало доход, то есть увеличение вложенной суммы.

Пример 1. Банк выплачивает 5 процентов годовых по депозитному вкладу. Согласно формуле (4.1) $100, вложенные сейчас, через год станут

.

Если вкладчик решает оставить всю сумму на депозите еще на один год, то к концу второго года объем его вклада составит

,

или по формуле (4.1)

.

Процесс наращения стоимости $100 по годам можно представить в виде таблицы или диаграммы:

Что такое временная стоимость денег

Временная стоимость или, как ещё часто говорят, временная оценка денег (ударение в слове «временная» здесь ставится на последний слог) – это экономическая концепция учитывающая изменение стоимости денег с течением времени.

Если говорить простыми словами, то суть данной концепции можно выразить одним предложением: одна и та же сумма денег сегодня стоит дороже, чем завтра и в последующие дни (причем, чем больше промежуток времени, тем больше эта самая разница в стоимости).

Объясняется это также довольно просто, как с экономической, так и с чисто психологической точки зрения. С точки зрения человеческой психологии всегда приятнее получить деньги сегодня, нежели завтра, в следующем месяце или через год. А поэтому одна и та же сумма полученная, что называется, сей момент, всегда оценивается дороже.

Ну а с точки зрения экономики, временная стоимость денег объясняется (и, собственно, оценивается) теми процентами, которые деньги могут принести за конкретный рассматриваемый промежуток времени.

Взять, к примеру, простой вклад в банк. Если вы положили на свой банковский счёт 100000 рублей, а через год сняли с него уже 108000 рублей, то временная стоимость указанной суммы денег за этот период составила 8000 рублей (более корректно будет указать её в процентах – 8% годовых).

В общем и целом из рассматриваемой концепции вытекают два следующих важных принципа:

  1. В рамках проведения любых финансовых операций (с платежами, разнесёнными по срокам) следует обязательно учитывать фактор времени при взаиморасчётах;
  2. В плане анализа долгосрочных инвестиций (или финансовых операций) некорректно суммировать денежные величины, относящиеся к разным моментам времени (без учёта стоимости денег за рассматриваемые периоды).

Как рассчитать временную стоимость денег

Теперь давайте поговорим о том, как, собственно говоря, эту самую пресловутую стоимость рассчитать. Как уже понятно из вышесказанного, временная стоимость денег в численном выражении является не чем иным, как той прибылью, которую можно бы было извлечь из них (например, посредством инвестирования) за рассматриваемый период времени.

То есть в самом простом случае, например при инвестировании денег в облигации с годовой ставкой доходности в 8%, потерянная прибыль за год будет составлять эти самые 8%. Другими словами, сумма в 100000 рублей, через один год будет оцениваться уже в (100000 + 100000х0,08) = 108000 рублей. И наоборот, будущая сумма (через один год) в 100000 рублей, в настоящее время будет оценена в 100000/1,08 = 92592,59 рублей.

При проведении финансовых операций, все разнесённые во времени платежи приводят к единому моменту времени (дисконтируют). Таким образом и учитывается временная стоимость денег.

Принято различать два основных вида стоимости:

  1. Нынешняя стоимость денег (Present value, PV);
  2. Будущая стоимость денег (Future value, FV).

Нынешнюю стоимость денег PV ещё называют дисконтированной стоимостью. Для приведённого выше примера (100000 рублей и восьмипроцентных облигаций), нынешняя стоимость денег равна 100000 рублей, а будущая, соответственно, 108000 рублей.

В общем случае, при проведении финансовых расчётов все денежные суммы приводятся либо к PV, либо к FV (за заданный промежуток времени) и только после этого их суммируют (или проводят другие вычисления с ними).

Расчёты величин PV и FV могут проводиться как на основе простого, так и на основе сложного процента.

Напомним, что сложным процентом называется начисление прибыли с учётом реинвестирования. То есть, например, прибыль за пять лет при годовой ставке доходности в 5%, будет считаться с учётом того, что каждый год к инвестируемой сумме добавляются 5% прибыли.

В случае расчёта на основе простого процента, формулы нынешней и будущей стоимости денег будут иметь вид:

Читать еще:  Агентский договор на перечисление денежных средств

где R – процентная ставка (годовых);

T – срок в годах.

При расчёте на основе сложного процента, формулы примут вид:

А, например, для случая аннуитетных платежей со ставкой роста g и ставкой дисконтирования i, нынешнюю стоимость денег (PV) можно рассчитать по формуле:

Что оказывает влияние на временную стоимость денег

Если, что называется, копнуть чуть глубже, то можно сказать, что временная стоимость денег может зависеть как от внутренних, так и от внешних факторов. К внутренним факторам следует отнести такие, которые зависят главным образом от того, каким образом происходит распоряжение деньгами с течением времени. А именно:

  1. Уровень доходности (проценты от инвестиций денежных средств);
  2. Уровень риска сопряжённый с вышеупомянутыми инвестициями. Риск может заключаться как в неполучении дохода от инвестиций, так и в прямом убытке от них (вплоть до полного невозврата инвестированных средств).

К внешним же факторам относят те, которые не зависят от того каким образом управляются деньги, в какие финансовые инструменты они инвестируются и пр. Самым главным из них является инфляция. Чем выше уровень инфляции, тем больше обесцениваются деньги со временем и, следовательно, тем меньше становится их будущая стоимость (FV).

Для учёта всех этих факторов существуют сложные формулы, позволяющие максимально точно (насколько это вообще возможно) рассчитать временную стоимость денег. Точность таких расчётов во многом ограничена тем, что такие величины как уровень доходности, риск или инфляция берутся исходя из прогнозируемых значений (а любой прогноз имеет свою степень погрешности).

Мы же не стали вникать в такие премудрости и привели простые формулы для расчёта текущей (PV) и будущей (FV) стоимости денег на основе предполагаемого уровня доходности по ним (см. предыдущий раздел). Полагаю, что этого вполне достаточно для того, чтобы понять всю суть излагаемой здесь теории.

Ну а если сказать ещё проще, то с точки зрения простого трейдера или инвестора, рассматриваемая концепция временной стоимости денег может быть сведена к аксиоме: Деньги должны делать деньги.

Понравилась статья? Сохраните ссылку на неё у себя в соцсетях:

Настоящая стоимость денежного потока

В основе концепции стоимости денег во времени лежит утверждение, что 1 у.е. сегодня стоит больше, чем 1 у.е. завтра. Это обусловлено тем, что на стоимость денег оказывает влияние множество факторов, таких как инфляция, ликвидность, риск и т.д. Под их воздействием с течением времени будет снижаться стоимость активов инвестора, если они не будут правильно инвестированы. Таким образом, при принятии инвестиционных решений инвестор должен попытаться учесть приведенные выше факторы, чтобы не допустить снижение стоимости своих активов. Одним из инструментов, позволяющих сделать такую оценку, является методика расчета настоящей стоимости (PV) денежного потока.

где FV – будущая стоимость денежного потока (денежная сумма на определенный момент в будущем);

i – ставка дисконтирования или требуемая норма доходности (англ. Required Rate of Return);

N – количество периодов, в течение которых будет удерживаться инвестиция.

Чтобы разобраться в этой методике рассмотрим ее на примере.

Пример

Инвестор рассматривает возможность приобретения беспроцентной облигации (англ. Zero Coupon Bond) номиналом 5000 у.е. и сроком обращения 5 лет. При этом эмитент облигации предлагает ее инвесторам за 3000 у.е. Необходимо определить целесообразность этого вложения, если требуемая норма доходности для инвестора составляет 9,5% годовых. Для этого нам необходимо рассчитать настоящую стоимость денежного потока, что схематически будет выглядеть следующим образом.

Фактически, номинальная стоимость облигации 5000 у.е. должна быть приведена к настоящему моменту (в нулевую точку) исходя из требуемой нормы доходности в 9,5%. Для этого нам надо последовательно дисконтировать денежный поток. Итак, настоящая стоимость 5000 у.е. на конец четвертого года составит 4566,21 у.е.

PV4 = 5000/(1+0,095) 1 = 4566,21 у.е.

Чтобы определить настоящую стоимость на конец третьего года, необходимо дисконтировать 4566,21 у.е.

PV3 = 4566,21/(1+0,095) 1 = 4170,05 у.е.

Дальнейшие расчеты выполняются аналогично.

PV2 = 4170,05/(1+0,095) 1 = 3808,27 у.е.

PV1 = 3808,27/(1+0,095) 1 = 3477,87 у.е.

PV = 3477,87/(1+0,095) 1 = 3176,14 у.е.

Таким образом, настоящая стоимость денежного потока составит 3176,14 у.е. Аналогичный результат будет получен, если мы используем приведенную выше формулу.

PV = 5000/(1+0,095)5 = 3176,14 у.е.

Проведенные расчеты позволяют сделать вывод, что осуществление этой инвестиции является выгодным для инвестора, поскольку стоимость приобретения облигации (3000 у.е.) ниже, чем настоящая стоимость.

Однако, допустим, что требуемая норма доходности для инвестора составляет не 9,5%, а 13% годовых. В этом случае настоящая стоимость денежного потока составит 2713,80 у.е.

PV = 5000/(1+0,13)5 = 2713,80 у.е.

В этом случае приобретение облигации за 3000 у.е. будет нецелесообразным, поскольку ее настоящая стоимость будет ниже этой суммы.

Применение этой методики на практике может быть затруднительным в результате фактора неопределенности. Как уже упоминалось выше, стоимость активов может меняться под воздействием ряда факторов, прогноз влияния которых в будущем может быть достаточно сложным. Например, такой показатель как инфляция оказывает непосредственное влияние на требуемую норму доходности. Другими словами, чем выше уровень инфляции в стране, тем большую доходность от инвестиций будут требовать инвесторы. Еще одним важнейшим индикатором является рост валового внутреннего продукта, поскольку он отражает состояние экономики в целом и может быть некоторой мерой риска осуществления инвестиций. То есть, в растущей экономике риски, связанные с инвестиционной деятельностью, как правило, ниже, чем при нулевом росте или рецессии.

Помимо макроэкономических факторов на требуемую норму доходности оказывает влияние индивидуальная склонность к риску. Например, инвестор в возрасте 50 лет будет более консервативным и не склонным к риску, поскольку в результате неудачных инвестиций у него не будет времени восполнить потери. 30-ти летний инвестор, напротив, может иметь более высокую склонность к риску и рассматривать рискованные инвестиционные возможности. Другими словами, требуемая норма доходности у первого инвестора будет ниже, чем у второго.

Учитывая вышесказанное, оценка настоящей стоимости денежного потока должна осуществляться максимально тщательно, поскольку неточность при определении требуемой нормы доходности может привести к серьезному искажению результатов.

На графике представлена динамика настоящей стоимости 1 у.е. при различных уровнях требуемой нормы доходности (ставки дисконтирования). Действительно, настоящая стоимость 1 у.е., полученной через 7 лет, при ставке дисконтирования 10% в настоящий момент составит 0,51 у.е. Если ставка дисконтирования составит уже 17%, то при тех же условиях настоящая стоимость будет равна 0,33 у.е.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector